

Commercial Complex At Chennai

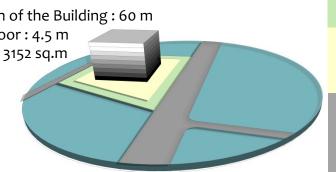
SITE AND SURROUNDINGS

Site Details

- Location: Injabakkam, Chennai.
- Latitude: 13.0827 N Longitutde: 80.2707 E
- **Climate:** Warm and Humid slowly moving towards Hot and Humid.
- Site surroundings:
- The site is abutting a 30 M wide East Coast Road and it is surrounded by low rise development.
- The surrounding area is well developed and it has Home stays and tourist Spots due to the proximity of the Beach.

Site Calculations

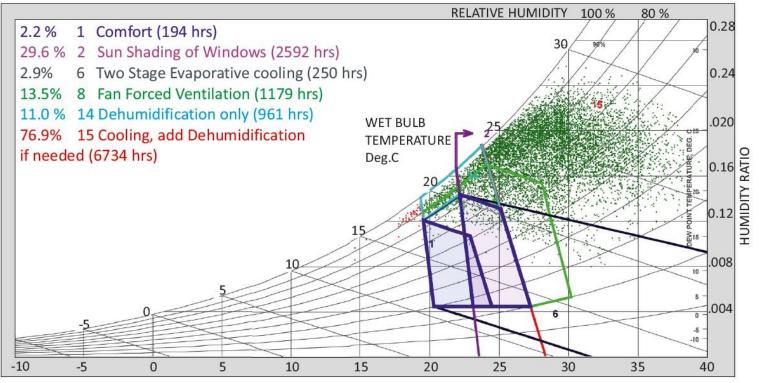
- Site Area : 2.8 Acres (11350 sq.m)
- FSI: 2.5


- Total Built up : 28375 sq.m
- Recreational Space: 10 % •

Maximum Ground Coverage and Minimum Height

- Maximum Ground Coverage : 50 %
- Height of Each Floor: 4.5 m
- Each Floor Plate : 6724 m
- No of Floors : 4
- Set Back : 7m

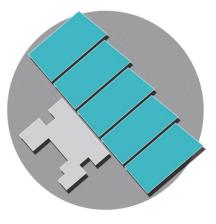
Minimum Ground Coverage and Maximum Height

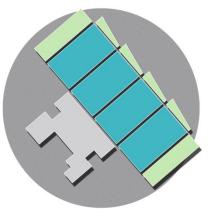

- Height Restriction of the Building : 60 m
- Height of Each Floor : 4.5 m
- Each Floor Plate : 3152 sq.m
- No of Floors : 9
- Set Back: 12 m

VGP Marine Kingdom

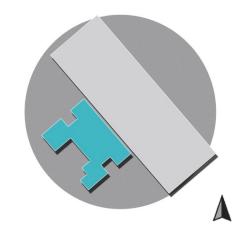
PSYCHROMETRIC CHART

- The purpose of a psychrometric chart is to display the strategies used to achieve thermal comfort inside the building.
- Against each strategy the comfort hours have been mentioned as well.

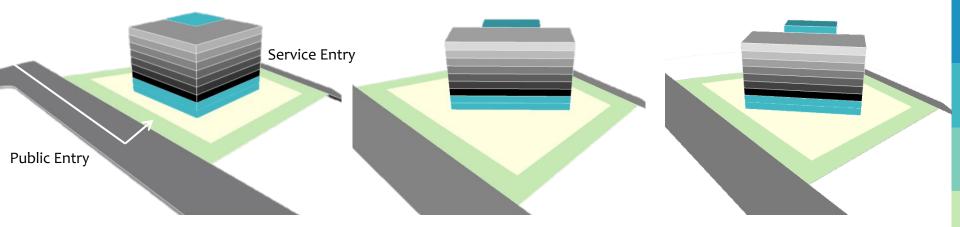



DRY BULB TEMPERATURE - Deg.C

A STEP TOWARDS EFFICIENCY


Design Stimulants

Since the site is surrounded by low rise development on all the sides, the commercial complex is a symbolic Building in the vicinity of Injabakkam. All the spaces would also have an axis that would connect one visually to the coast.



- The modular form helps in having flexible working spaces, thus benefiting the owner and tenants while leasing out the space.
- The building has been oriented in such a way, that the habitable spaces receive the north light and have an advantage of the view too.
- Creating an island of daylight around the working spaces benefiting the occupants health and well being

 The spaces are zoned in such a way that the service areas are to the south west gaining maximum heat and do not get advantage of the view.

EVOLUTION OF FORM

Zoning Segregation of Activities

Orientation

Orienting the Public and Working space in such a way that they are visually connected to the Sea and receive North East Light.

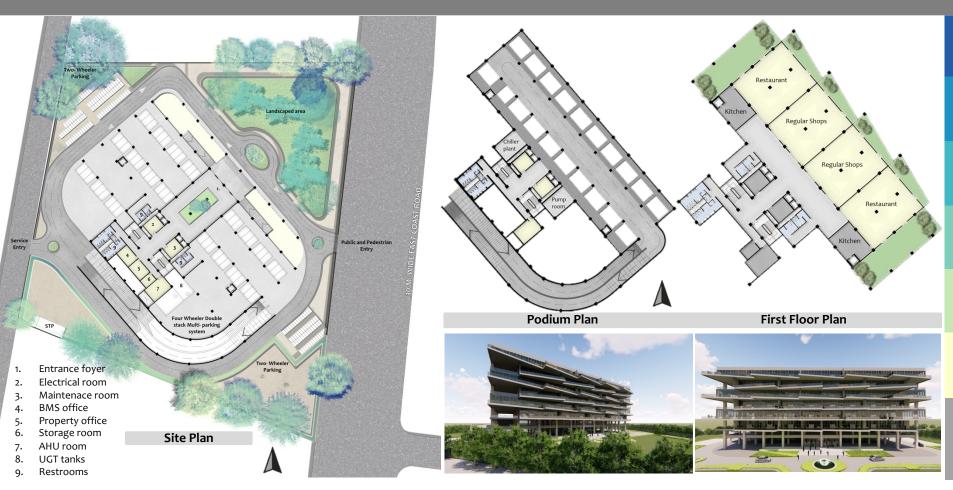
Strategy

By separating the core from the working spaces and bridging the same would create an island which would enable the spaces to receive daylight from all sides.

EVOLUTION OF FORM

Transformation

Buffer spaces and terraces have been added to mutually shade the spaces. Also these spaces will benefit the occupant's health and comfort.


Alternatives

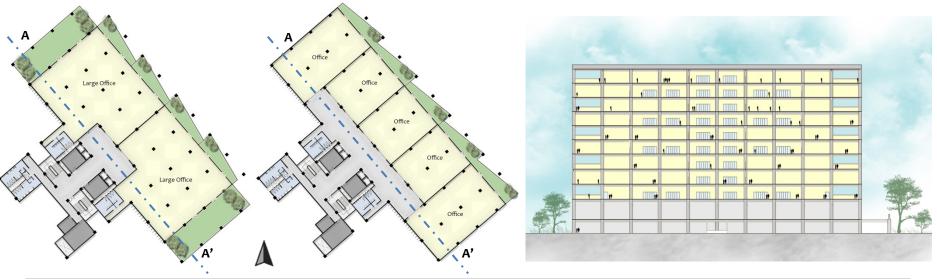
Various permutations and Combinations were used to derive the best form which would benefit the occupants as well as prove to be efficient in terms of energy and sustainability.

Evolution

The final form consists of mutually shaded buffer spaces at every level to cater to the occupants health and comfort. The working spaces oriented North East help in receiving diffused light throughout the day.

COMMERCIAL COMPLEX- BUILDING PLANS

COMMERCIAL COMPLEX- BUILDING PLANS



COMMERCIAL COMPLEX- BUILDING PLANS

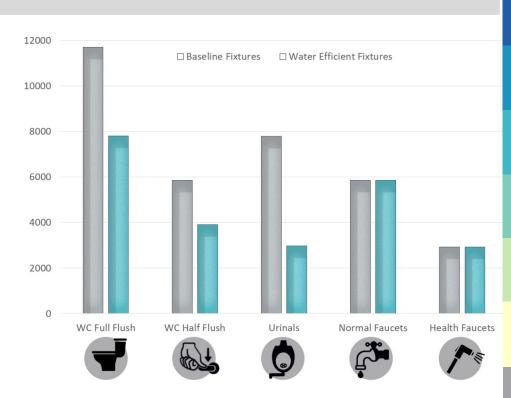
Fifth, Seventh, Ninth Floor Plan

Sixth Floor Plan

Section A-A'

CALCULATION AND SIMULATION RESULTS

WATER CALCULATIONS

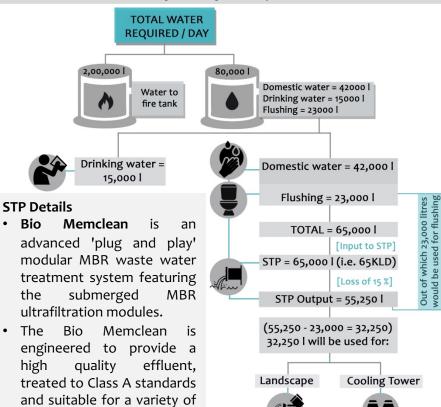

D Baseline Fixtures vs Water Efficient Fixtures

Water efficient plumbing fixtures with low flow rates as compared to the baseline criteria in aggregate are selected.

🕈 🕹 🧔 🎓	Baseline Criteria as per IGBC	Water Efficient fixtures
Water closet (full flush)	6 Litres / Flush	4 Litres / Flush
Water closet (Half flush)	3 Litres / Flush	2 Litres / Flush
Urinals	4 Litres / Flush	1.6 Litres / Flush
Normal and health faucets	0.1 Litres / Second	0.1 Litres / Sec

Summary of the Flow Rates of the Fixtures

Graph Showing the comparison between the Baseline Fixtures and Water Efficient Fixtures


WATER CALCULATIONS

Total Water Required per day

•

٠

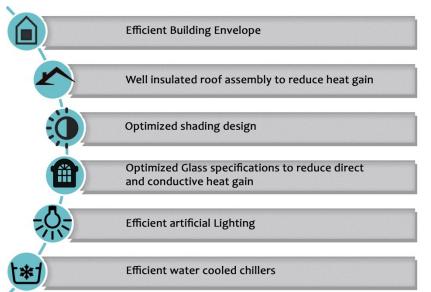
reuse applications.

Rainwater Harvesting System

Total	
94.905	~
70.3	~
14.69825	Win
77.33	
37.04625	
294.2795	
Cu.m.	Litres
94.905	94905
199.3745	199374.5
	294279.5
	lated through p

need atleast 12 recharge pits of 25 cu.m each per day

Rainwater harvesting calculations - Chennai


PROJECT SCOPE: ECBC + COMPLIANCE

Energy Consumption Benchmarks

- **Computer simulation** has been used to analyse energy performance.
- A baseline building as per the requirements of **ECBC 2017** whole building performance method was modelled.
- The building was simulated with its actual orientation and again after rotating the entire building **90, 180, 270 degrees,** then averaging the results to get the Baseline building Energy consumption in Kilowatt Hours.

Identification	Energy Use (kWh / Annum)
Average Baseline Building as per ECBC 2017 whole building performance based method.	6257437
Proposed Building :	5299222
% Savings over baseline:	16%

Energy Efficient Measures

- The baseline building was modified to model a number of individual energy conservation measures (ECMs). A final list of ECMs was prepared based on the feasibility of the option.
- The ECMs on the final list were then combined into a single case to model the Proposed Building. As stipulated by the Performance Rating Method, the Proposed and baseline building are identical in terms of:
- 1. Geometry 2. Simulation software 3. Weather data 4.Occupancies
- Whole building performance approach is an alternative to the prescriptive approach of Code Compliance and it applies to all building types covered by the ECBC Code.

PROJECT SCOPE: ECBC + COMPLIANCE

Envelope Design

- The envelope design plays a vital role in creating energy efficient buildings with high comfort for its occupants.
- It is one of the easiest ways to significantly increase the performance of a commercial building.
- 1. Glazing
- A glass with high VLT and low SHGC glass was selected, which would cut down the heat load to a great extent.
- Double Glazed Unit (Outer = 6mm with coating Face 2 12 mm Air Gap Inner 6mm Clear).

	Transmission	(%) Solar Factor (SHGC)	U Value (W/ sq. m K)
Pristine White Planitherm	75	0.57	1.8

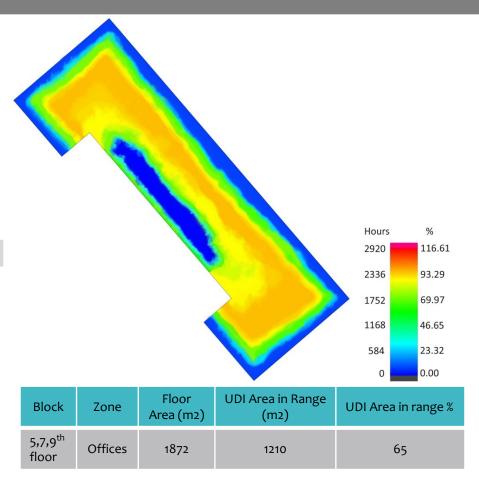
2. Wall

• The Wall assembly consists of AAC (Autoclaved Aerated Concrete) Blocks sandwiched between 19 mm of External Plaster containing sand aggregate and 12mm of Internal Gypsum Plastering.

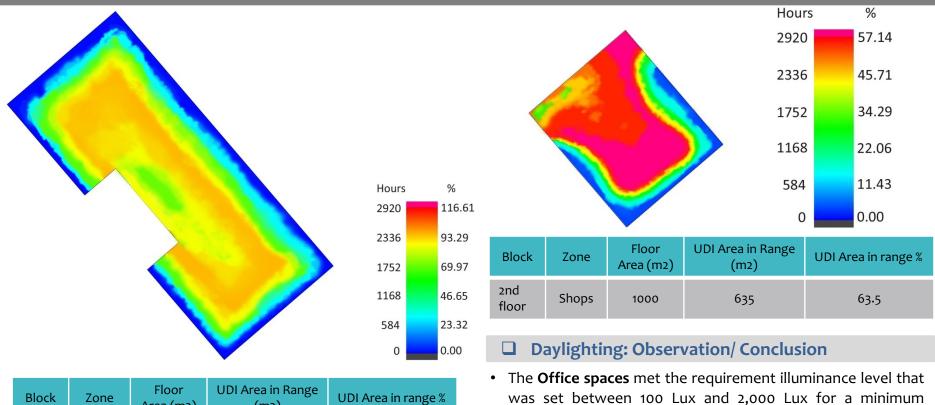
AAC Block		Wall Assembly		
U Value (W / sq.m K)	0.6	U Value (W / sq.m K)	0.965	

3. Roof

- Roof as a building surface that has the most exposed area to the sun, contributes to most of heat gain in the building.
- Therefore, high SRI Tiles were laid on the roof and a layer of 60 mm XPS Insulation Boards was provided above the RCC Slab.


		U Value (W /sq.m K)
	Roof Assembly	0.512
Element	Material/ Type	Reasons behind the choice
Roof	High SRI Tiles on the roof and RCC with underdeck XPS insulation sandwiched between layers of Plaster.	To reduce the heat gain from the roof top.
Wall	AAC Blocks sandwiched between layers of Plaster.	To maintain the high thermal mass and also they are lightweight, load-bearing, high-insulating.
Window	Double Glazed, low heat gain, high visible transmittance.	To reduce heat gain through conduction, direct heat gain through solar radiation.
Shading devices	Vertical fins, designed for architectural integration and shading.	To impose an architectural character and work on increasing their effectiveness as they provide the much needed shade.

LIGHTING DESIGN

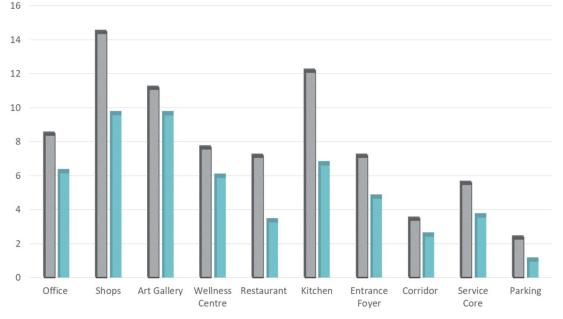

- Lighting includes the use of both artificial light sources like lamps and light fixtures, as well as natural illumination by capturing daylight.
- Daylighting is sometimes used as the main source of light during daytime in buildings.
- This can save energy in place of using artificial lighting, which represents a major component of energy consumption in buildings.
- Proper lighting can enhance task performance, improve the appearance of an area and have positive psychological effects on occupants.

Daylighting

- Design Builder software is used to demonstrate compliance through the daylighting simulation method.
- The illuminance level was set between 100 Lux and 2,000 Lux for a minimum percentage of 50 % of the floor area for at least 90% of the potential daylight time.
- The measurements were taken at a work plane height of 0.8 m above the finished floor.
- The period of analysis was fixed for 8 hours per day, resulting in 2,920 hours in total.

LIGHTING DESIGN

percentage of 50 % and Shops having a percentage of 15% of the floor area for at least 90% of the potential daylight time


and therefore complying to the ECBC + requirement.

Block	Zone	Floor Area (m2)	UDI Area in Range (m2)	UDI Area in range %	
4,6,8 th floor	Offices	2232	1570	70.3	

LIGHTING DESIGN

Artificial Lighting Design

- Use of energy efficient lighting fixtures and good placement of fixtures are two keep elements for reducing lighting load significantly.
- In order to make best use of high performance glazing with high VLT, lighting fixtures with stepped control were selected for the spaces.

LPD – Base Case v/s Design Case

Base Case Design Case

HVAC SYSTEM DESIGN

- Air conditioning is responsible for a major part of a building's energy consumption.
- The Commercial complex consists of shopping plazas as well office spaces which require high end electronic equipment's and high lux level lightings for their day to day operations.
- Hence the HVAC system load would be more.
- Along with the internal heat gain that takes an account of the occupant and equipments, the heat gain due to the climatic conditions also contributes significantly to the extra load on HVAC system.

D Tonnage Calculations

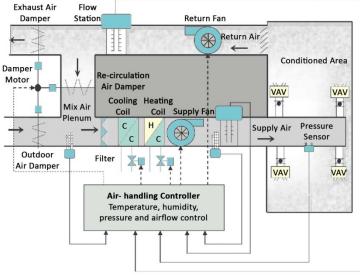
Space name	Area Sq. Mt	Area Sq. Ft.	Height in m	Height in ft.	cu. m	cu.ft	No. of air changes	cfh	cfm	Total tonnage (TR)
Restaurant	1000	10764	3.75	12.30	12304	132438	8	1059501	17658	39
Office	12000	129168	3.45	11.32	135833	1462111	6	8772664	146211	325
Gym	200	2153	3.75	12.30	2461	26488	6	158925	2649	6
Non - Gym	300	3229	3.75	12.30	3691	39731	6	238388	3973	9
Shops	3250	34983	3.75	12.30	39987	430422	8	3443377	57390	128
Art Gallery	500	5382	3.75	12.30	6152	66219	5	331094	5518	12
Entrance Lobby	250	2691	3.75	12.30	3076	33109	3	99328	1655	4
Passages	4000	43056	3.45	11.32	45278	487370	3	1462111	24369	54
	21500	231426								576

	Equipment Load	Occupant Load	Lighting Load	Increament due Air change		
	BTU / Hr	Total Heat gain	40% Reduction due to LED	Volume in cu. ft.		
		BTU /Hr			x 1.25	
Restaurant	0.00	2,00,000.00	24,398.40	58,272.53	72,840.66	
Office	9,04,176.00	5,40,000.00	2,92,780.80	12,23,723.10	15,29,653.88	
Gym	6,458.40	90,000.00	4,879.68	23,309.01	29,136.26	
Non- Gym	0.00	35,000.00	7,319.52	34,963.52	43,704.40	
Auditorium	0.00	66,000.00	79,294.80	17,481.76	21,852.20	
Shops	16,146.00	2,25,000.00	12,199.20	3,49,635.17	4,37,043.96	
Art Gallery	5382.00	45,000.00	6,099.60	58,272.53	72,840.66	
Entrance lobby	0.00	0.00	97,593.60	29,136.26	36,420.33	
Passages	0.00	0.00	0.00	4,66,180.23	5,82,725.29	
	9,32,162.40	12,01,000.00	5,24,565.60		28,26,217.64	

Tonnage due to internal heat gain

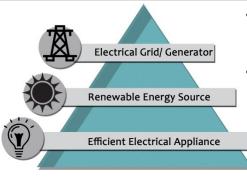
Extra Load due to occupancy, Lighting, Equipement and Infiltration of Air : 5483945.6371

1 TR = 12000 BTU / Hr | Tonnage : 457 Tons


TOTAL TONNAGE : 1033 Tons = 1100 tons of Air Conditioning

Tonnage due to the Volume of Spaces

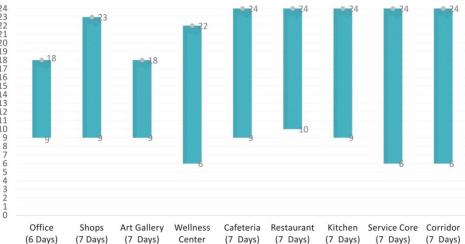
HVAC SYSTEM DESIGN


VAV System

- Variable Air Volume with water chiller with dehumidifier is chosen for the project as it can satisfy the variable requirement of the end users and the space.
- The central chiller plant is located on the Podium and AHUs have been located on all floors to control the flow, moreover the system can be controlled centrally so that all the demands specific to that particular zone can be satisfied.

Schematic diagram explaining the VAV system

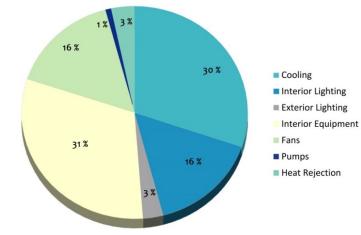
Renewable Energy Integration: SPV Plant


- The top tier of the energy efficiency pyramid is renewable energy.
- Solar Energy is plentiful, reliable and renewable energy source and is also the cleanest type of energy known to man since it does not harm the environment.

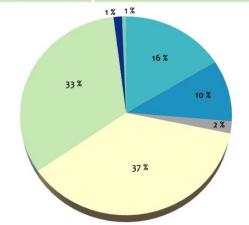
- The commercial complex at Chennai has an advantage to harness major of the solar energy since there are no high rise buildings surrounding the site.
- On the basis of MNRE Roof Top Solar PV calculator results, the 81
 kW SPV power plant is estimated to generate 121500 kWh.
 Considering 300 days of solar radiation i.e. 10 months approximately solar plant will generate 121.5 MWh electricity annually. [1kWp solar rooftop plant will generate on an average over the year 5.0 kWh of electricity per day].

Parameters	ECBC + Base Case	Design Case
Exterior wall Construction Wall	U – Value: 0.34 W/m2.K	Plastered AAC Blocks U – Value 0.965 W/m2.K
Roof Construction	U – Value : 0.26 W/m2.K	U value of the entire assembly: High SRI Orientbell Cool Tiles + 60mm XPS + 150 mm RCC roof + plaster
		U Value: 0.512 W/m2.K
	Base case glass	Saint Gobain – Infinity Double Glazed Unit Pristine White Planitherm
Glazing	U value: 2.20 W/m2.K	U value: 1.8 W/m2K
	SHGC: 0.25	Typical Floors with Shading Devices/ Balcony Projection SHGC: 0.57
	VLT : 27%	VLT:75 %
Overall Wall window ratio (%) 40 %		North East : 60 % South West : 20 % The Overall WWR : 40 %
Shading device	None	Vertical fins, designed for architectural integration and shading

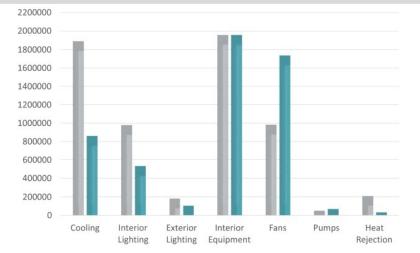
Parameters		ECBC + Base Case	Design Case		
LPD (W/Sq mt)					
	Office	8.6	6.4		
	Shops	14.6	9.8		
	Art Gallery	11.3	9.8		
	Wellness Centre	7.8	6.13		
LPD	Restaurant	7.3	3.49		
(W/Sq mt)	Kitchen	12.3	6.86		
	Entrance Foyer	7.3	4.9		
	Corridor	3.6	2.67		
	Service Core	5.7	3.8		
Parking		2.5	1.2		
		Controls			
Occupancy sensors		None	Yes		
Daylight sensors		None	Yes		
	HVAC Water Cooled Centrifugal Chiller COP: 6.2		Water Cooled Screw Chiller COP: 5.5		


Occupancy Schedule

(6 Days)

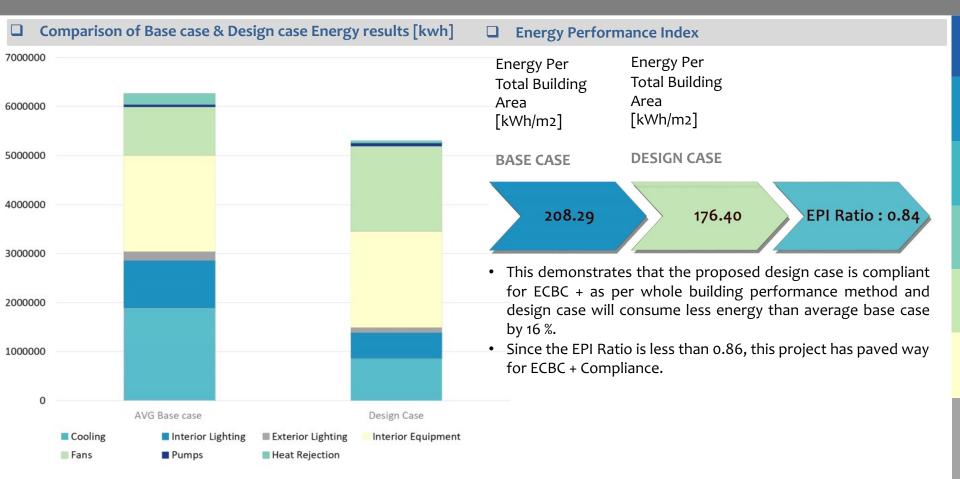

Simulation Results- Base case Energy Consumption [kwh]

Parameters	Base case 00	Base case 90	Base case 180	Base case 270	Average Base case
Cooling	1891537	1889915	1896468	1887083	1891251
Interior Lighting	981360	981360	981360	981360	981360
Exterior Lighting	181907	181907	181907	181907	181907
Interior Equipment	1957385	1957385	1957385	1957385	1957385
Fans	984186	982574	995365	977010	984784
Pumps	51563	51484	52036	51313	51599
Heat Rejection	209144	209149	209170	209145	209152
Total End Uses	6257081	6253774	6273691	6245203	6257437



Gimulation Results- Design case Energy Consumption [kwh]

Parameters	Design Case
Cooling	861991.52
Interior Lighting	534750.45
Exterior Lighting	103356
Interior Equipment	1957385.22
Fans	1737482.47
Pumps	70306.89
Heat Rejection	33949.6
Total End Uses	5299222.17


Cooling
Interior Lighting
Exterior Lighting
Interior Equipment
Fans
Pumps
Heat Rejection

AVG Base case Design Case

	AVG Base case	Design Case	
Cooling	1891251	861992	
Interior Lighting	981360	534750	
Exterior Lighting	181907	103356	
Interior Equipment	1957385	1957385	
Fans	984784	1737482	
Pumps	51599	70307	
Heat Rejection	209152	33950	
Total End Uses	6257437	5299222	

Comparison of Base case & Design case Energy results [kwh]

Yes	Maybe	No	IGBC Credit Points		
5	0	0		Sustainable Architecture and Design	
1			SA CR 1	Integreted design approach	1
2			SA CR 2	Site Preservation	2
2			SA CR 3	Passive architecture	2
14	0	0		Site Selection and Planning	14
	Mandatory	,	SSP MR 1	Local Building Regulations	Mandatory
	Mandatory	,	SSP MR 2	Soil Erosion Control	Mandatory
1			SSP CR 1	Basic Amenities	1
1			SSP CR 2	Proximity to public transport	1
1			SSP CR 3	Low emitting vehicles	1
2			SSP CR 4	Natural topography or vegetation	2
1			SSP CR 5	Preservation or Transplantation of trees	1
2			SSP CR 6	Heat Island Effect,Non Roof : 50%, 75%	2
2			SSP CR 7	Heat Island Effect, Roof : 50%, 75%	2
1			SSP CR 8	Outdoor Light Pollution Reduction	1
1			SSP CR 9	Universal Design	1
1			SSP CR 10	Basic Facilities for Construction Workforce	1
1			SSP CR 11	Green Building Guidelines	1

Yes	Maybe	No	IGBC Credit P		
19	0	0	Water Conservation		19
	Mandatory		WC MR 1	Rainwater Harvesting	Mandatory
	Mandatory		WC MR 2	Water Efficient Plumbing Fixtures	Mandatory
2			WC CR 1	Landscape Design	2
1			WC CR 2	Management of Irrigation Systems	1
4			WC CR 3	Rainwater Harvesting, Roof & Non-roof	4
5			WC CR 4	Water Efficient Plumbing Fixtures	5
5			WC CR 5	Waste Water Treatment and Reuse	5
2			WC CR 6	Water Metering	2
14	0	14		Energy Efficiency	
	Mandatory		EE MR 1	Ozone Depleting Substances	Mandatory
	Mandatory		EE MR 2	Minimum Energy Efficiency	Mandatory
	Mandatory		EE MR 3	Commissioning Plan for Building Equipment & Systems	Mandatory
1			EE CR1	Eco-friendly Refrigerants	1
7		8	EE CR 2	Enhanced Energy Efficiency	15
2		4	EE CR 3	On-site Renewable Energy	6
		2	EE CR 4	Off-site Renewable Energy	2
2			EE CR 5	Commissioning, Post-installation of Equipment & Systems	2
2			EE CR 6	Energy Metering and Management	2

Yes	Maybe	No		IGBC Credit	Points
16	0	0	Building Materials and Resources		16
	Mandatory	,	BMR MR 1	BMR MR 1 Segregation of Waste, Post-occupancy	
8			BMR CR 1	Sustainable Building Materials	8
2			BMR CR 2	Organic Waste Management, Post-occupancy	2
1			BMR CR 3	Handling of Waste Materials, During Construction	1
5			BMR CR 4	Use of Certified Green Building Materials, Products & Equipment	5
10	0	1		Indoor Environmental Quality	11
	Mandatory	,	IEQ MR 1	Minimum Fresh Air Ventilation	Mandatory
	Mandatory		IEQ MR 2	Tobacco Smoke Control	Mandatory
1			IEQ CR 1	CO2 Monitoring	1
1		1	IEQ CR 2	Daylighting	2
1			IEQ CR 3	Outdoor Views	1
1			IEQ CR 4	Minimise Indoor and Outdoor Pollutants	1
3			IEQ CR 5	Low-emitting Materials	3
2			IEQ CR 7	Indoor Air Quality Testing, After Construction and Before Occupancy	2
1			IEQ CR 8	Indoor Air Quality Management, During Construction	1
7	0	0		Innovation and Design	7
4			ID CR 1	Innovation in Design Process	4
1			ID CR 2	Optimisation in Structural Design	1
1			ID CR 3	Waste Water Reuse, During Construction	1
1			ID CR 4	IGBC Accredited Professional	1
85	0	15			100

	Rating	
	Certified	40-49
IGBC Green New Building Rating System	Silver	50-59
	Gold	60-75
	Platinum	75-100

THANK YOU!